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Abstract. An approximate theory for tracer diffusion on a lattice containing randomly
distributed traps and in the presence of a finite concentration of diffusing particles which preclude
double occupancy of any site is developed by extending earlier theories of diffusion in a many-
particle system on perfect lattices using random-walk concepts. Both blocking and dynamic
correlation effects are considered. The theoretical results are compared with computer simulation
for a two-dimensional square lattice with two types of trap over the entire concentration range for
particles and traps. The agreement between the simulation results and the theory is satisfactory
and gives confidence that the approximation will be valid more widely in models of diffusion
in disordered lattices.

1. Introduction

In this and the previous paper [1], we study two simple models of systems of classical
particles undergoing activated hopping motion on a disordered lattice. These represent, in
very idealized form, the physics of systems which display superionic conduction and are
particularly relevant to the study of ionic motion in glassy materials such as lithium boracites
used as solid-state electrolytes [2]. In particular we study the characteristics of motion of
a single tagged tracer particle in the presence of a finite concentration of other particles
where the interaction is taken into account by precluding the possibility that two particles
can simultaneously occupy the same site. This avoidance of double occupancy gives rise
to a dynamic disorder which causes correlations in the motion of the tracer particle. For a
general introduction to these systems see the previous paper [1] and references therein.

Figure 1(b) of [1] represents the case treated here where wells of varying depth are
distributed at random on a lattice. As is clear from this figure the potential barriers which
must be surmounted differ from site to site and the hopping rates between wells of different
depths are no longer symmetric. Our main objective is to consider a qualitative model
for the diffusion coefficient of a tagged particle including the concepts of blocking and
correlation. It is known from earlier work that a tagged particle in a many-particle system
without static disorder shows both of these effects. However, as will be shown in section
2, even a one-particle system with random traps displays a reduction in its diffusivity. It
is therefore to be expected that the blocking in a many-particle system in the presence of
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traps will have two contributions. The effect on correlations is more subtle. Although no
correlations are induced by the direct interaction of the tagged particle with the traps, there
is the possibility that the traps, by affecting the movement of the background particles, will
induce changes in the dynamic correlation factor. The qualitative model considered in this
paper allows us to elucidate these effects.

The theoretical predictions are checked against computer simulation results which are
carried out for a system with two types of trap randomly distributed in a square lattice.
The diffusion coefficient is computed as a function of the concentration of traps and of
background particles. Other simulations of many-particle systems with random traps have
been performed by Maket al [3], whose studies were concerned with chemical or collective
diffusion. A more complete treatment has been given by Kehr and Paetzold [4] including
a simulation of tracer diffusion in a variety of lattices. Recent work by Wichmann and
Kehr [5] discusses an effective-medium treatment, building on earlier treatments [6, 7], and
applies this to collective diffusion for various distributions of site energies for comparison
with simulations in one, two, three, four and five dimensions. Our work is more complete
for a single case in order to allow detailed comparison with the approximate analytic theory,
developed here.

The paper is organized as follows. In section 2 we discuss theoretical models. Section
3 is dedicated to the main aspects of the simulation. In section 4 we compare the simulation
results with the prediction of the theory. Finally in section 5 we summarize the main results
of this study.

2. Theory and model

We consider a system with only two types of site,A andB, with the corresponding hopping
rates denoted byJA andJB . In this situation the elements of the hopping matrix are defined
by

Jil =
{
JA if l is a site of typeA

JB if l is a site of typeB.
(1)

We will assume thatJA > JB and that sitesA andB are randomly distributed in a square
lattice. The formalism can easily be adapted to other dimensions and lattice geometries. We
first consider the problem of a single particle moving in this system and leave discussion
of the many-particle case to subsection 2.2.

2.1. The single-particle system

Particles moving in a lattice with randomly distributed traps are known to display normal
diffusive properties [8]. It can be shown by a variety of methods [9] that the diffusion
coefficient can be written as

D = ZJm

2d
(2)

whereZ is the number of nearest neighbours,d is the space dimension and

Jm
−1 =

〈
1

J

〉
= 1

Ns

∑
i

1

Ji
. (3)
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In this expressionNs is the number of sites in the lattice andJi designates the rate of
hopping out of sitei in a given direction. For a system with two types of site we have

J−1
m =

1− x
JA
+ x

JB
= 1

JAfm
(4)

wherex is the concentration of typeB sites andfm = (1− x + xJA/JB)−1. In the follow-
ing we show that the random walk of a particle in this system is not correlated, but only
affected by a factor which is caused by the different timescales involved.

The rate equation for a particle moving in the system is given by

d〈pi〉
dt
=
∑
l

(Jil〈pl〉 − Jli〈pi〉) (5)

where〈pi〉 is the probability that the particle is occupying sitei. In the steady-state regime,
the equilibrium probabilities for the particle occupying a specific typeA or typeB site are
then related as

JA〈pA〉 = JB〈pB〉. (6)

From conservation of probability we have that

(1− x)〈pA〉 + x〈pB〉 = 1/Ns. (7)

From equations (6) and (7) we obtain the following probabilities for occupying either a type
A or typeB site at equilibrium:

〈PA〉 = (1− x)Ns〈pA〉 = (1− x)/JA
(1− x)/JA + x/JB (8)

〈PB〉 = xNs〈pB〉 = x/JB

(1− x)/JA + x/JB . (9)

In the general many-particle case, using the discrete picture of the random walk, the
mean square displacement after an average number ofN attempted hops can be written as

〈R2〉 = fbfcN (10)

wherefb andfc are the ‘effective blocking’ and correlation factors, respectively. The factor
fb is defined as the fraction of successful jumps out of a given number of attempted hops,
i.e.,

fb = N ′/N (11)

whereN ′ is the number of successful jumps inN attempts. This factor can easily be
calculated by considering all possible environments experienced by the random walker,
calculating the probabilities of a successful hop in each one, multiplying the latter
probabilities by the occurrence probabilities of the respective environments, and adding
the results. It contains two effects; one due to the different hopping rates leads to an
averaging given byfm in equation (4) while the second is a true ‘blocking’ due to the
hard-core repulsion between atoms. In the general case these two effects are interrelated so
we use the single termeffective blocking factorto include both.

Returning to the single-particle case and definingε0 as the rate of the Poisson process
relating the discrete- and continuous-time pictures, the probabilities of a successful jump
if the particle is occupying a typeA or type B site are given byZJA/ε0 and ZJB/ε0,
respectively. Making use of equations (8) and (9) we then obtain

fb = Z〈PA〉JA/ε0+ Z〈PB〉JB/ε0 = 1

(1− x)/JA + x/JB
Z

ε0
. (12)
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Noting thatN = ε0t , we obtain

〈R2〉 = ZJmfct (13)

leading to the following expression for the diffusion coefficient:

D = ZJmfc

2d
. (14)

Comparing equations (2) and (14) we conclude that in this casefc = 1, showing that the
direct interaction of the particle with the traps does not induce correlations in its motion
while fb = fm since there is no true ‘blocking’. This result could have been anticipated by
noting that the traps do not cause any spatial imbalance in the probabilities for jumps of
the particle.

2.2. The many-particle system

In treating the tracer diffusion coefficient in the present system we follow ideas similar to the
ones developed in reference [1], based on a straightforward application of effective-medium
results in conjunction with the Tahir-Kheli and Elliott (TKE) [11] approximation for tracer
diffusion in systems without static disorder.

As a starting approximation we consider that the tagged particle and the background
particles move in an effective medium with a hopping rate, given by equation (4), derived
for the problem of a single particle moving in the disordered lattice. In this approximation
and in the framework of the TKE interpolating scheme, the diffusion coefficient would be

D = (1− c)fmf0JA (15)

wherec is the concentration of the background particles and

f0 =
(

1− 2c cosθ0

(1+ (1− c)f0)(1+ cosθ0)

)−1

. (16)

From equation (15) we recognize the resulting effective blocking factor as being the
combination of rate averagingfm and true blocking by other atoms to give a vacancy
concentration 1− c:

fb = (1− c)fm (17)

while the correlation factor is given solely by the dynamical factorf0. Since the direct
interaction of the tagged particle with the traps does not induce any additional correlation
effects, it is plausible that the resulting correlation factor involves only the dynamical
term. There is the possibility, however, that the traps influence the relative motion of the
background particles with respect to the tagged particle causing changes in way in which
these particles interact. More specifically, there is the possibility that this effect results in
changes in the probabilities for a forward and a backward jump of the tagged particle. We
will pursue this point further later on.

The effective blocking factor in this problem due to the traps should depend on the
steady-state probabilities of the tagged particle occupying either a typeA or a typeB site,
which in turn depend on the probabilities of the background particles occupying either a
type A or a typeB site, so it is clearly not given correctly by equation (17). Therefore,
the first correction to the effective-medium formula is to improve on this result. As seen in
subsection 2.1, the effective blocking factor can be calculated by considering all possible
environments experienced by the tagged particle and the probabilities of a successful hop
in each one. Figure 1 shows all possible static environments when the tagged particle is
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Figure 1. Possible static environments experienced by the tagged particle. HerenA and nB
have the same meaning as〈nA〉 and〈nB 〉 in the text.

occupying either a typeA or a typeB site. The quantities〈nA〉 and 〈nB〉 designate the
probabilities that a typeA or a typeB site is occupied by a background particle. When
one considers all possible dynamical arrangements and the probability of a successful hop
in each one, the weights shown in figure 1 are obtained. Denoting byPA and PB the
probabilities that the tagged particle occupies a typeA site or a typeB site, respectively, it
can be shown that the effective blocking factor assumes the form

fb = (1− c)(PA + PBJB/JA) (18)

noting that if the tagged particle is occupying a typeB site the relative probability of a
successful hop isJB/JA, and using the relation

(1− x)〈nA〉 + x〈nB〉 = c. (19)

To obtainPA andPB we make use of the rate equations for a many-particle system. The
rate equation for the site occupation probabilities of background particles is given by

d〈ni〉
dt
=
∑
l

(Jil〈nl(1− ni − pi)〉 − Jli〈ni(1− nl − pl)〉). (20)

In equilibrium with d〈ni〉/dt = 0 we shall assume that the particle averages decouple [10],
giving the following condition:

JB〈nB〉(1− 〈nA〉 − 〈pA〉) = JA〈nA〉(1− 〈nB〉 − 〈pB〉) (21)

where〈pA〉 and〈pB〉 are now the probabilities that the tagged particle is occupying a type
A or typeB site, respectively. Since these are of the order of 1/Ns they can be disregarded
in equation (21). The resulting equation together with equation (19) form a system of
equations the solution of which gives the probabilities〈nA〉 and〈nB〉:

〈nB〉 = K −
√
K2− 4cx(1− JB/JA)
2x(1− JB/JA) (22)

〈nA〉 = c − x〈nB〉
1− x (23)
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where

K = (1− c − x)JB/JA + c + x. (24)

The probabilities that the tagged particle is occupying either a typeA or typeB site can be
inferred from equation (19) to give

PA = (1− x)〈pA〉Ns (25)

PB = x〈pB〉Ns (26)

from which we obtain

PA = 1− x
1− x + x〈nA〉/〈nB〉 (27)

PB = x〈nA〉/〈nB〉
1− x + x〈nA〉/〈nB〉 . (28)

Applying these results in equation (18), the final expression for the effective blocking factor
now assumes the form

fb = (1− c)
(

1− x + x(1− 〈nA〉)/(1− 〈nB〉)
1− x + x〈nA〉/〈nB〉

)
(29)

and in our approximation the diffusion coefficient is expressed as

D = fbf0JA. (30)

It is easily checked that equation (30) reproduces correctly the single-particle limit.
We expect a good agreement with the simulations in the regime of low concentrations of
background particles. In the opposite limit, i.e., the single-vacancy limit, the correlation
factor predicted by equation (30) is given byf0 = (1+ cosθ0)/(1− cosθ0), which is the
same result as for a perfect lattice. It is not difficult to see, however, that the dynamical
correlation factor in this limit should depend on the relative concentration of traps. For
instance, if just after an exchange with the vacancy the tagged particle is occupying a type
A site, a return jump will be more probable than if the tagged particle were occupying a
typeB site. This is because in the first case the vacancy moves on average with a hopping
rate lower than that of the tagged particle,JA. The opposite situation holds if the tagged
particle is occupying a typeB site. Therefore, in the limit of large particle concentration
we expect that the traps will induce changes in the dynamical correlation factor. In what
follows, based on the above considerations, we will attempt to derive an expression for the
dynamical correlation factor appropriate to the large-c limit.

We will denote by cosθ1 the difference between the probabilities for a forward and a
backward jump of the tagged particle just after an exchange with the vacancy. Note that
cosθ0 denotes the value of cosθ1 for a perfect lattice. We begin by assuming that the
vacancy moves in an effective medium with an effective hopping rateJv which interpolates
between the limitsJA at x = 0 andJB at x = 1. Then it is possible to show that

(〈cosθ1〉)α = Jα

ε0
(Umi − Uii) (α = A,B) (31)

whereU designates the usual generating functions associated with the random walk of a
single particle.

Following the procedures outlined in section 3 and the appendix of the previous paper
we find that in this case

(〈cosθ1〉)A = JA cosθ0

Jv(1+ cosθ0)− JA cosθ0
(32)

(〈cosθ1〉)B = JB cosθ0

Jv(1+ cosθ0)− JB cosθ0
. (33)
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The final value of〈cosθ1〉 is obtained by averaging over these two values weighted with
the probabilities of the two situations. The probability that, just after an exchange with the
vacancy, the tagged particle is occupying a typeA site is given by the probability that the
vacancy was occupying a typeA site just before the exchange. The same principle applies
in the case of typeB sites. Now if 〈vα〉 is the probability that the vacancy occupies a
specific typeα site, by conservation of probability we have

(1− x)〈vA〉 + x〈vB〉 = 1

Ns
. (34)

On the other hand, in the single-vacancy limit the equilibrium condition given by equation
(18) may be written as

JB〈vA〉 = JA〈vB〉 (35)

since in this limit〈nA〉 ∼ 〈nB〉 ∼ 1. The probabilities that the vacancy occupies any one of
the typeA or typeB sites are given by

VA = (1− x)Ns〈vA〉 (36)

VB = xNs〈vB〉. (37)

Combining equations (34)–(37) we obtain

VA = 1− x
1− x + xJB/JA (38)

VB = xJB/JA

1− x + xJB/JA . (39)

The average value of cosθ1 then assumes the form

〈cosθ1〉 = VA(〈cosθ1〉)A + VB(〈cosθ1〉)B
=
(

(1− x)JA
Jm(1+ cosθ0)− JA cosθ0

)
cosθ0

1− x + x(JB/JA)
+
(

xJB(JB/JA)

Jm(1+ cosθ0)− JB cosθ0

)
cosθ0

1− x + x(JB/JA) . (40)

Here, since the vacancy does not move on its own, but because of the movement of the
particles in the system, it is reasonable to suppose that its effective hopping rate is the same
as the one ascribed to the particles (see equation (4)), i.e.Jv = Jm. Our final expression for
the dynamical correlation factor in the limit of high concentration of background particles
is then given by equation (16) with cosθ0 replaced by cosθ1 given by equation (40).

3. Simulations

In section 4 of the previous paper [1] we discussed the relationship between the transition
probability per unit time (Wαβ) of the continuous-time master equation and the transition
matrix element (Aαβ) for the discrete-time Poisson process. In order to define the simulation
procedure we can rewrite the matrix elements of the previous paper [1] as follows:

Aαβ =


JB

JA

1

NpZ
if the transition occurs ‘through’JB

1

NpZ
if the transition occurs ‘through’JA

(41)
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and

Aαα = 1−
∑
β 6=α

Aβα (42)

whereNp is the total number of particles andNpZJA stands for the maximum rate of
hopping out of the possible configurations.

The simulations were performed in square lattices ofNs × Ns sites (Ns = 100) using
periodic boundary conditions. A randomly chosen fractionx of the sites were labelled as
typeB, while the rest of them were labelled as typeA. ThenNp = cN2

s labelled particles
were randomly distributed on the lattice, where each site was assigned a label to indicate
whether it is empty or not. In the innermost simulation loop a particle and one of its nearest-
neighbour sites are selected randomly. If the nearest-neighbour site is already occupied, the
configuration of the system is kept unchanged, but if it is empty, the site occupied by the
selected particle is identified. If this site is of typeA, the particle is moved to the nearest-
neighbour site. On the other hand if it is a typeB site, a random number between zero and
one is generated and the move is made if the random number is less thanJB/JA, otherwise
the configuration is kept unchanged. Note that we assumedJA > JB , in particular we set
JA = 2JB throughout the simulations. This procedure reproduces correctly the probabilities
given by equations (41) and (42).

In these simulations the time was measured by Monte Carlo steps per particle (MCS/p),
with the unit now being 1/JAZ. Like in the previous paper [1] the mean square displacement
of a given particle has been studied using the lattice repetition scheme for enabling particle
movement up to arbitrarily large displacement. Also the time history of any one of the
particles in the system was considered as a tracer particle history. The tracer mean square
displacement〈R2〉 and quantity〈R4〉 were calculated at each MCS/p by averaging them over
all particles. The diffusion coefficient was obtained from the〈R2〉 data with a weighted
linear least-squares fitting, using〈R4〉−〈R2〉2 as weighting factors, as described in detail in
the previous paper [1]. The average occupation of typeA sites,〈nA〉, and of typeB sites,
〈nB〉, were also calculated at each time step. In order to calculate the effective blocking
factor, the number of successful hops of each particle was recorded. At each MCS/p, the
average number of successful hops was obtained by averaging over all of the particles.

In terms of the simulation time span, averaging over tracer particle histories and
averaging over disorder the simulation procedure followed that of the previous paper [1].
We therefore expect the error estimates to be equivalent with those given there. Although
we did not check for the finite-size effects, we note that similar simulations carried out
using comparable lattice sizes suggest that finite-size corrections are of the same order of
magnitude as the statistical fluctuations [1, 12].

To check the model for high concentrations, we also performed a simulation to calculate
directly the values of〈cosθ1〉, (〈cosθ1〉)A and(〈cosθ1〉)B . The procedure and its justification
are quite simple. Since the maximum rate of transition out of the possible configurations
in the limit of only one vacancy is 4JA, we can perform a simulation which makes use of
this value for the total rate of the Poisson process. A procedure which reproduces these
transition probabilities is as follows. Select at random a particle neighbouring the vacancy.
If the site occupied by the selected particle is of typeA, the particle is moved to the vacancy
position. If the particle is occupying a typeB site, a random number between zero and
one is generated and tested against the value ofJB/JA. If the random number is less than
JB/JA, the particle is moved to the vacancy position. Otherwise the system configuration
is kept unchanged. We calculate〈cosθ1〉 using its definition, i.e., giving a value−1 for two
successive steps of a particle in opposite directions and 1 for two successive steps in the
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same direction. The final value is obtained by averaging over the history of each particle
and then averaging over all particles.(〈cosθ1〉)A and (〈cosθ1〉)B were calculated in the
same way. These simulations were also performed in a lattice withNs = 100, for a total
of 2× 107 vacancy steps and 10 ensembles over the disorder.

Table 1. Simulation results for the effective blocking factor as a function of the concentration
of typeB sites (x) and the concentration of background particles(c).

Concentration of typeB sites (x)

c 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.05 0.8669 0.7961 0.7354 0.6831 0.6371 0.5968 0.5610 0.5293 0.5007
0.10 0.8240 0.7582 0.7010 0.6509 0.6068 0.5680 0.5335 0.5024 0.4749
0.20 0.7370 0.6807 0.6305 0.5860 0.5458 0.5102 0.4781 0.4493 0.4234
0.30 0.6485 0.6012 0.5581 0.5190 0.4833 0.4510 0.4220 0.3956 0.3717
0.40 0.5586 0.5198 0.4836 0.4501 0.4192 0.3909 0.3651 0.3413 0.3198
0.50 0.4675 0.4365 0.4072 0.3796 0.3536 0.3294 0.3071 0.2865 0.2675
0.60 0.3756 0.3516 0.3290 0.3071 0.2863 0.2666 0.2483 0.2311 0.2148
0.70 0.2825 0.2556 0.2489 0.2328 0.2174 0.2024 0.1882 0.1746 0.1620
0.80 0.1889 0.1781 0.1674 0.1570 0.1466 0.1367 0.1269 0.1175 0.1086
0.90 0.0948 0.0895 0.0844 0.0793 0.0741 0.0692 0.0642 0.0594 0.0546
0.95 0.0475 0.0449 0.0424 0.0398 0.0373 0.0348 0.0323 0.0298 0.0274

Table 2. Simulation results for the correlation factor computed through equation (30) using the
simulation data forfb andD. The results are displayed as a function of the concentration of
typeB sites (x) and the concentration of background particles (c).

Concentration of typeB sites (x)

c 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.05 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98
0.10 0.93 0.94 0.94 0.95 0.94 0.94 0.94 0.95 0.95
0.20 0.89 0.88 0.88 0.89 0.88 0.89 0.88 0.89 0.89
0.30 0.82 0.82 0.81 0.82 0.81 0.82 0.82 0.82 0.82
0.40 0.76 0.75 0.75 0.76 0.76 0.75 0.75 0.76 0.77
0.50 0.71 0.70 0.70 0.68 0.68 0.69 0.69 0.70 0.71
0.60 0.65 0.64 0.63 0.63 0.63 0.63 0.64 0.64 0.65
0.70 0.59 0.58 0.58 0.57 0.57 0.57 0.57 0.58 0.59
0.80 0.54 0.53 0.52 0.52 0.51 0.52 0.52 0.53 0.54
0.90 0.49 0.48 0.47 0.47 0.46 0.46 0.46 0.48 0.48
0.95 0.47 0.46 0.45 0.44 0.43 0.44 0.44 0.45 0.47

4. Results

Since the relation between the numbers of successful and attempted hops is linear with time
for all times, we took as the effective blocking factorfb the result obtained att = 2000
MCS/p. The average occupations of typeA and typeB sites were obtained by averaging
over the results of the last 50 MCS/p. Tables 1 and 2 display the results forfb and the
correlation factorfc, respectively.
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Figure 2. Comparison between theoretical (curves) and simulation results for the effective
blocking factor. The curves are arranged from top to bottom by the concentration of background
particles in the same order as is given in table 1.

On comparing the predictions of equations (22) and (23) for〈nA〉 and 〈nB〉 with the
simulation results we find almost exact agreement for the entire range of values ofx.
Figure 2 displays the theoretical and simulation results for the effective blocking factor.
The agreement is remarkably good. One of the reasons for this good agreement is that
the relation between the numbers of successful and attempted hops is linear for all times.
A comparison between the correlation factor of TKE theory given by equation (16) and
the simulation results show that, from low to intermediate concentrationsc, the agreement
is quite good. For values ofc in the rangec > 0.50, the simulation results begin to
show an increasing variation as a function of the relative concentration of traps. This
can be best appreciated in figure 3 and is an indication that towards higher concentrations
of background particles there is an increasing influence of the disorder on the motion
of the background particles. This influence is sufficiently strong to cause alterations in
the dynamical correlation factor. We note that the largest deviation from the predicted
values occurs atx ' 0.50 when the disorder is greatest. These deviations in the limit
of high concentrations of background particles are in accordance with our expectations as
discussed at the end of section 2. Figure 4 displays a comparison between theoretical and
simulation results for the diffusion coefficient. Despite the discrepancies in the correlation
factor for intermediate to high concentrations of background particles, we note that a model
incorporating the correct effective blocking factor gives a fair account of the simulation
results. In order to check the qualitative model for high concentrations of background
particles developed at the end of section 2, we display in figure 5 the computed values of
〈cosθ1〉, (〈cosθ1〉)A and (〈cosθ1〉)B in conjunction with the values predicted by equations
(32), (33) and (40). The general agreement between theory and simulation is again quite
good, and gives the expected limit atx = 0. The maximum deviation from the perfect-
lattice value occurs atx ' 0.50 when the amount of disorder is maximal. In figure 6 we
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Figure 3. Comparison between theoretical and simulation results for the correlation factor. The
theoretical results (curves) were calculated for cosθ1 = cosθ0. The results are expressed as a
function of the concentration of typeB sites. The curves are arranged from top to bottom by
the concentration of background particles in the same order as is given in table 1.

Figure 4. Comparison between theoretical (curves) and simulation results for the diffusion
coefficient. The theoretical results are for cosθ1 = cosθ0. The results are shown as a function
of the concentration of typeB sites. The curves are arranged from top to bottom by the
concentration of background particles in the same order as is given in table 1.
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Figure 5. Comparison between theoretical (curves) and simulation results for the average cosine
between two successive displacements of the tagged particle.

Figure 6. Comparison between theoretical results (curves) obtained using cosθ1 from equation
(40) and simulation results (points) for the correlation factor. The upper curve is forc = 0.90,
while the lower curve corresponds toc = 0.95. The theoretical results obtained using cosθ0 are
horizontal lines as shown in figure 4.

compare the theoretical result forf0 with the simulation results in the limit of largec. It
is seen that the model with corrections to cosθ1 greatly improves the description of the
high-concentration limit.

5. Summary

A qualitative model for explaining the diffusive behaviour of a tagged particle in a system
with two types of trap randomly distributed in a lattice has been proposed. The model
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relies on the concepts of blocking and correlation and is readily generalized to the situation
in which there are several different types of trap. It has been shown that the direct
interaction of the tagged particle with the traps does not introduce correlations in the
motion of the former. This interaction, however, in combination with the interaction
between tagged and background particles, is responsible for a blocking effect which gives the
dominant contribution to the structure of the diffusion coefficient. From low to intermediate
concentrations of background particles, the correlation factor is well reproduced by the
dynamical correlation factor corresponding to a system of particles in a perfect lattice. For
high concentrations of background particles the traps considerably affect the movement of
the background particles inducing observable changes in the dynamical correlation factor.
Such changes can be thought of as being a consequence of the fact that the traps induce
changes in the relative velocity between tagged and background particles. A simple model,
based on the random walk of a vacancy in a disordered lattice, accounts well for the observed
behaviour of the dynamical correlation factor.

Acknowledgments

LFP thanks the Brazilian Research Council (CNPq) and the Brazilian Space Research
Institute (INPE) for financial support. KK gratefully acknowledges the hospitality of the
Department of Physics in Oxford where this work was begun.

References

[1] Perondi L F, Elliott R J and Kaski K 1997J. Phys.: Condens. Matter9 7933
[2] Balkanski M and Massot M 1989Disorder in Condensed Matter Physicsed J A Blackman and J Tagueña

(Oxford: Oxford University Press) p 74
[3] Mak C H, Andersen H C and George S M 1988J. Chem. Phys.88 4052
[4] Kehr J W and Paetzold O 1992PhysicaA 190 1
[5] Wichmann T and Kehr K W 1995 J. Phys.: Condens. Matter7 717
[6] Brouwer R C, Salomons E and Griessen R 1988Phys. Rev.B 38 10 217
[7] Salomons E 1988J. Phys. C: Solid State Phys.21 5953
[8] Haus J W, Kehr K W and Lyklema J W 1983Phys. Rev.B 25 2095
[9] Haus J W and Kehr K W 1987Phys. Rep.150 265

[10] Spohn H 1983J. Phys. A: Math. Gen.16 4275
[11] Tahir-Kheli R A and Elliott R J 1983Phys. Rev.B 27 844
[12] Tahir-Kheli R A and El-Meshad N 1985Phys. Rev.B 32 6166


